
CMPSCI 677 Distributed and Operating Systems Spring 2024

Lecture 15: April 1
Lecturer: Prashant Shenoy Scribe: James Bardowski, Y. Vayunandhan Reddy, Yamini Kashyap

15.1 Leader Election

Many tasks in distributed systems require one of the processes to act as the coordinator. Election algorithms
are techniques for a distributed system of N processes to elect a coordinator (leader). An example of this is
the Berkeley algorithm for clock synchronization, in which the coordinator has to initiate the synchronization
and tell the processes their offsets. A coordinator can be chosen amongst all processes through leader election.

15.1.1 Bully Algorithm

The bully algorithm is a simple algorithm, in which we enumerate all the processes running in the system
and pick the one with the highest ID as the coordinator. In this algorithm, each process has a unique ID
and every process knows the corresponding ID and IP address of every other process. A process initiates an
election if it just recovered from failure or if the coordinator failed. Any process in the system can initiate
this algorithm for leader election. Thus, we can have concurrent ongoing elections. There are three types of
messages for this algorithm: election, OK and I won. The algorithm is as follows:

1. A process with ID i initiates the election.

2. It sends election messages to all process with ID > i.

3. Any process upon receiving the election message returns an OK to its predecessor and starts an election
of its own by sending election to higher ID processes.

4. If it receives no OK messages, it knows it is the highest ID process in the system. It thus sends I won
messages to all other processes.

5. If it received OK messages, it knows it is no longer in contention and simply drops out and waits for
an I won message from some other process.

6. Any process that receives I won message treats the sender of that message as coordinator.

An example of Bully algorithm is given in Figure 15.1. Communication is assumed to be reliable during
leader election. If the communication is unreliable, it may happen that the elected coordinator goes down
after it being elected, or a higher ID node comes up after the election process. In the former case, any node
might start an election process after gauging that the coordinator isn’t responding. In the latter case, the
higher ID process asks its neighbors who is the coordinator. It can then either accept the current coordinator
as its own coordinator and continue, or it can start a new election (in which case it will probably be elected as
the new coordinator). This algorithm runs in O(n2) time in the worst case when lowest ID process initiates
the election. The name bully is given to the algorithm because the higher ID processes are bullying the lower
ID processes to drop out of the election.

15-1



15-2 Lecture 15: April 1

Figure 15.1: Depiction of Bully Algorithm

Question: Can multiple processes elect their own leaders? How do you decide who is the leader finally?
Answer : There are no subsets or groups that we are dealing with here. All processes are in the same group
and they have a consensus that the process with the highest ID will be the leader. If there are multiple
groups, we are only worried about the leader in that group.

Question: Can the leader be a single machine?
Answer : We don’t actually care about number of machines in the system. Here, it is a process that is chosen
as the leader, regardless of number of machines and number of processes running on each machine.

Question: Are we assuming here that every node knows about every other node in the system and that
they can communicate with each other without a middle-man?
Answer : Yes, here we assume that all processes are aware of the presence of all other processes and can
communicate with each other.

Question: Does the chosen leader also need to know about the presence of all other processes in the system?
Answer : That depends on the type of work that is expected out of the leader. For instance, if it is a time-
server, then it only needs to answer time queries and not anything pertaining to other processes but if the
leader’s job is distributed lock synchronization, then it needs to know the state and other information of all
the other processes. Responsibilities of the leader are not a part of the leader election mechanism.

Question: How do you tell whether a process(leader in this case) has really failed/stopped or is just slow?
Answer : There is no way to differentiate between a slow and a stopped process as such. So all these algo-
rithms work based on time-outs. The process is declared to be dead if it is slow enough to respond after the
time-out. Essentially, a failed/stopped process is equivalent to an infinitely slow process. However, when
the old leader(slow process) discovers that another leader has been chosen and their process ID is smaller,



Lecture 15: April 1 15-3

the old leader can reinitiate the leader election process.

15.1.2 Ring-based Election Algorithm

The ring algorithm is similar to the bully algorithm in the sense that we assume the processes are already
ranked through some metric from 1 to n. However, here a process i only needs to know the IP addresses of
its two neighbors (i+1 and i-1). We want to select the node with the highest id. The algorithm works as
follows:

• Any node can start circulating the election message. Say process i does so. We can choose to go
clockwise or counter-clockwise on the ring. Say we choose clockwise where i+1 occurs after i.

• Process i then sends an election message to process i+1.

• Anytime a process j ̸= i receives an election message, it piggybacks its own ID (thus declaring that it
is not down) before calling the election message on its successor (j+1).

• Once the message circulates through the ring and comes back to the initiator i, process i knows the
list of all nodes that are alive. It simply scans the list and chooses the highest id.

• It lets all other nodes about the new coordinator.

Note that a process might have to jump over its neighbor and contact the neighbor’s neighbor in case the
neighbor has failed, otherwise the circulation of the election message across the ring will never finish.

Figure 15.2: Depiction of Ring Algorithm

An example of Ring algorithm is given in Figure 15.2. If the neighbor of a process is down, it sequentially
polls each successor (neighbor of neighbor) until it finds a live node. For example, in the figure, when 7 is
down, 6 passes the election message to 0. Another thing to note is that this requires us to enforce a logical
ring topology on the underlying application, i.e. we need to construct a ring topology on top of the whole
system just for leader election.

Question: What initiates the election?
Answer : Any process can initiate the election. Say the leader L was a time-server and a process X discovers



15-4 Lecture 15: April 1

that X is not responding anymore, then X can initiate the election process.

Question: Is the ring topology applied only for elections?
Answer : Yes, as this is a distributed system, communication between any pair of processes can take place.
But for the purpose of leader election, a process of ID i will only communicate with the processes having
id i−1 and i+1, i.e. as a ring topology because this brings the complexity of the leader election down to O(n).

Question: How many members of the ring does a process need to know?
Answer : In the worst case, a process will have to communicate with all members of the system during
the election process, i.e. in a scenario when most of the processes have failed and stopped responding, the
remaining processes will have to jump over multiple processes in between in order to elect the next leader.

Question: If every node knows the process ID of all other nodes in the system, why do we need to perform
leader election?
Answer : This is because the process starting the election does not know the highest ID process that is alive
at that point of time.

Question: If two elections are going on simultaneously, what happens when the first one concludes?
Answer : The second election continues until its completion.

Question: Does election have an ID?
Answer : Yes, so as to facilitate multiple elections occurring simultaneously.

Question: What if the leader crashes even before it is announced?
Answer : You will still announce the chosen process as the leader and it will continue to remain the leader
until some process notices that it is no more alive and initiates another election algorithm.

Question: How do you annouce the leader? Is it a message broadcast?
Answer : The leader information is circulated along the ring itself by the initiator of the election. It is not a
one-to-all broadcast.

15.1.3 Time Complexity

The bully algorithm runs in

• O(n2) in the worst case (this occurs when the node with lowest ID initiates the election)

• O(n−2) in the best case (this occurs when the node with highest ID that is alive initiates the election)

The ring algorithm always takes 2(n-1) messages to execute. The first (n-1) is during the election query and
second time to announce the results of the election. It is easy to extend ring algorithm for other metrics like
load, etc.



Lecture 15: April 1 15-5

15.2 Distributed Synchronization

Every time we wish to access a shared data structure or critical section in a distributed system, we need to
guard it with a lock. A lock is acquired before the data structure is accessed, and once the transaction has
completed, the lock is released. Consider the example below:

Figure 15.3: Example of a race condition in an online store.

In this example, there are two clients sending a buy request to the Online Store Server. The store implements
a thread-pool model. Initially the item count is 3. The correct item count should be 1 after two buy
operations. If locks are not implemented there may be chance of race condition and item count can be 2.
This is because the decrement is not an atomic operation. Each thread needs to read, update and write the
item value. The second thread might read the value while first thread is updating the value (it will read 3)
ans update it to 2 and save it, which is incorrect. This is an example of trivial race condition.

15.2.1 Centralized Mutual Exclusion

In this case, locking and unlocking coordination are done by a master process. All processes are numbered
1 to n. We run leader election to pick the coordinator. Now, if any process in the system wants to acquire
a lock, it has to first send a lock acquire request to the coordinator. Once it sends this request, it blocks
execution and awaits reply until it acquires the lock. The coordinator maintains a queue for each data
structure of lock requests. Upon receiving such a request, if the queue is empty, it grants the lock and sends
the message, otherwise it adds the request to the queue. The requester process upon receiving the lock
executes the transaction, and then sends a release message to the coordinator. The coordinator upon receipt
of such a message removes the next request from the corresponding queue and grants that process the lock.
This algorithm is fair and simple.

Figure 15.4: Depiction of centralized mutual exclusion algorithm.



15-6 Lecture 15: April 1

An example of the algorithm is given in Figure 15.4. There are two major issues with this algorithm, related
to failures. When coordinator process goes down while one of the processes is waiting on a response to a
lock request, it leads to inconsistency. The new coordinator that is elected (or reboots) might not know that
the earlier process is still waiting for a response. This issue can be tackled by maintaining persistent data
on disk whenever a queue of the coordinator is altered. Even if the process crashes, we can read the file and
persist the state of the locks on storage and recover the process.

The harder problem occurs when one of the client process crashes while it is holding the lock (during one
of its transactions). In such a case, coordinator is just waiting for the lock to be released while the other
process has gone down. We cannot use timeout in this case, because usually transactions take arbitrary
amount of time to go through. All other processes that are waiting on that lock are also blocked forever.
Even if the coordinator somehow knew that the client process has crashed, it may not always be advisable
to take the lock forcibly back because the client process may eventually reboot and think it has the lock and
continue its transaction. This causes inconsistency. This is a thorny problem which does not have any neat
solution. This limits the practicality of such an centralized algorithm.

Question: Can you check whether the process holding the lock is alive rather than forcing it to release the
lock?
Answer : Yes, this is a feasible solution. When the lock holding time expires, the coordinator can just ask
the process whether it wants to renew the lock for another time slice or give the lock up. You can grant locks
in intervals of time and have the provision to extend that time so long as the process is alive and willing to
hold the lock.

Question: What about consistency when the process holding the lock crashes?
Answer : This is an application-level problem. It needs to be handled by the application logic such that all
transactions happening within the synchronized block adhere to the desired ACID properties.

15.2.2 Decentralized Algorithm

Decentralized algorithms use voting to figure out which lock requests to grant. In this scenario, each pro-
cess has an extra thread called the coordinator thread which deals with all the incoming locking requests.
Essentially, every process keeps a track of who has the lock, and for a new process to acquire a new lock, it
has to be granted an OK or go ahead vote from the strict majority of the processes. Here, majority means
more than half the total number of nodes (live or not) in the system. Thus, if any process wishes to acquire
a lock, it requests it from all other processes and if the majority of them tell it to acquire the lock, it goes
ahead and does so. The majority guarantees that a lock is not granted twice. Upon the receipt of the vote,
the other processes are also told that a lock has been acquired and thus, the processes hold up any other
lock request. Once a process is done with the transaction, it broadcasts to every other process that it has
released the lock.

This solves the problem of coordinator failure because if some nodes go down, we can deal with it so long as
the majority agrees that whether the lock is in use or not. Client crashes are still a problem here.

Question: If the minority of processes say NO to a lock request, will there be inconsistency?
Answer : Since we are taking a majority vote here, we will assume that the majority of the processes have the
correct state of the lock. Normally, there wouldn’t be any inconsistency issues. Only inconsistency comes
when a process crashes and is not aware of the state of the lock after it restarts. Such a process will tend to
give bad replies and this issue is overcome by relying on the majority to give the right replies.



Lecture 15: April 1 15-7

Question: If we want to overcome getting bad replies from processes, can we use techniques like process
start time?
Answer : Strictly speaking, the system can force a process to first recover its lock state fully before it can
start responding to lock vote requests. However, this is not used in the method currently because we are
anyway robust to the bad replies as long as they are in minority.

Question: Is it possible that nobody gets the majority votes?
Answer : If more than half the processes of the system crash, then this will happen as although the minority
of processes that are alive have the correct state of the lock but the majority is sending garbage back during
voting.

Question: Is there an associated RELEASE message for every REQUEST message?
Answer : Yes, once a process is done executing their critical section, they send a RELEASE request to all other
processes so that they can update their lock state and grant the lock to the next process in REQUEST queue.

Question: Is there an associated RELEASE message for every REQUEST message?
Answer : Yes, once a process is done executing their critical section, they send a RELEASE request to all other
processes so that they can update their lock state and grant the lock to the next process in REQUEST queue.

Question: In the decentralized algorithm, what are we voting on?
Answer : The vote is simply a YES or NO. Every process responds with YES or NO based on whether it
wants to allow the asking process to acquire the lock or not.

Question: If a process is not using the lock, will it say YES?
Answer : In thos technique, every process is running the lock manager code as well. So they are aware of the
state of the lock and they will grant the lock based on that state.

15.2.3 Distributed Algorithm

This algorithm, developed by Ricart and Agrawala, needs 2(n−1) messages and is based on Lamport’s clock
and total ordering of events to decide on granting locks. After the clocks are synchronized, the process that
asked for the lock first gets it. The initiator sends request messages to all n− 1 processes stamped with its
ID and the timestamp of its request. It then waits for replies from all other processes.

Any other process upon receiving such a request either sends reply if it does not want the lock for itself, or
is already in the transaction phase (in which case it doesn’t send any reply and the initiator has to wait),
or it itself wants to acquire the same lock in which case it compares its own request timestamp with that of
the incoming request. The one with the lower timestamp gets the lock first.

• Process k enters critical section as follows:

– Generate new time stamp TSk = TSk+1

– Send request(k,TSk) all other n-1 processes

– Wait until reply(j) received from all other processes

– Enter critical section



15-8 Lecture 15: April 1

• Upon receiving a request message, process j

– Sends reply if no contention

– If already in critical section, does not reply, queue request

– If wants to enter, compare TSj with TSk and send reply if TSk < TSj , else queue (recall: total
ordering based on multicast)

This approach is fully decentralized but there are n points of failure, which is worse than the centralized
one.

15.2.4 Token Ring Algorithm

In the token ring algorithm, the actual topology is not a ring, but for locking purpose there is a logical ring
and processes only talk to neighboring processes. A process with the token has the lock at that time. To
acquire the lock one needs to wait. The token is circulated through the logical ring. No method is there
to request the token, the process needs to wait to get a lock. Once the process has token it can enter the
critical section.

This was designed as part of a networking protocol Token Ring. In physical networking, only one node can
transmit at a time. If multiple nodes transmit at a time there is a chance of collision. Ethernet handled it
by detecting collisions. A node transmits and if there is a collision it backs off and will succeed eventually.
In Token Ring this was handled using locks. Only one machine has lock at an instance in the network and
it transmit at that particular time.

In this algorithm one problem is loss of token. Regenerating the token is non-trivial, as you can not use
timeout strategy.


